Experimental Test of Quantum Jarzynski Equality with a Trapped Ion System

2014, Jul. 18 **Shortcuts to Adiabaticity,** Telluride, CO **Kihwan Kim**

Tsinghua University Institute for Interdisciplinary Information Sciences

University Center for Quantum Information

Outline

Quantum Jarzynski Equality

- Classical Jarzynski Equality
- Definition of Work in quantum system

Introduction to a Trapped ion system

- Trapping ions
- Basic Operations
- Internal and External Degree of Freedom

Experimental Test of Quantum Jarzynski Equality

- Experimental Procedure
- Thermal State Preparation
- Projective Measurement
- Work Distribution

Conclusion and Outlook

Our Group and Collaborations

Graduate Students

Zhang Xiang, Um Mark, Zhang Junhua, An Shuoming, Wang Ye, Dingshun Lv

Shen Yangchao, Zhang Kuan Lu Yao

Post-doc. Dahyun Yum

Theoretical Collaborations

Jarzynski Equality

 $\langle W \rangle \ge \Delta F$

Theorem

Fluctuation Dissipation $\langle W \rangle \approx \Delta F + \sigma^2 / 2k_B T$

Jarzynski Equality

$$\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$$

C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997) Also, G.E. CrooksPhys. Rev. E 60, 2721{2726 (1999).

Experimental Demonstration on Classical Equality

Mechanical Oscillator:

F. Douarche, S. Ciliberto, A. Petrosyan, and I. Rabbiosi, Europhys. Lett. 70, 593 (2005)

Colloidal Particles:

V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger, Phys. Rev. Lett. 96, 070603 (2006)

Electronic System:

O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. V. Averin, and J. P. Pekola, Phys. Rev. Lett. 109, 180601(2012)

RNA:

J. Liphardt, S. Dumont, S. B. Smith, I. J. Tinoco, and C. Bustamante, Science 296, 1832 (2002)

Titin:

N. C. Harris, Y. Song, and C.-H. Kiang, Phys. Rev. Lett. 99, 068101 (2007)

Quantum Jarzynski Equality

S. Mukamel, Phys. Rev. Lett. **90**, 170604 (2003), H. Tasaki, cond-mat/0009244 (2000), J. Kurchan, cond-mat/0007360 (2000).

Work in Quantum Regime
$$W=E_{_{m}}ig(t_{_{f}}ig)\!-E_{_{n}}ig(t_{_{i}}ig)$$

Proof of the Equality
$$\langle \exp(-\beta W) \rangle = \exp[-\beta (F_f - F_i)] = \frac{Z_f}{Z_i}$$

Initial and final free energy $Z_{i,(f)} = \sum_{n} \exp\left[-\beta E_n(t_{i,(f)})\right] = \exp\left(-\beta F_{i(f)}\right)$

$$\left\langle \exp(-\beta W) \right\rangle = \frac{1}{Z_i} \sum_{n} \exp\left[-\beta E_n(t_i)\right] \sum_{m} K_{mn} \exp\left\{-\beta \left[E_m(t_f) - E_n(t_i)\right]\right\}$$
$$= \frac{1}{Z_i} \sum_{nm} K_{mn} \exp\left[-\beta E_m(t_f)\right] = \frac{Z_f}{Z_i} \frac{1}{Z_f} \sum_{m} \exp\left[-\beta E_m(t_f)\right] = \frac{Z_f}{Z_i}$$

Quantum Jarzynski Equality

Employing Trapped Cold Ions to Verify the Quantum Jarzynski Equality, Gerhard Huber, Ferdinand Schmidt-Kaler, Sebastian Deffner and Eric Lutz, Phys. Rev. Lett. 070403 (2008).

Quantum Jarzynski Equality

Outline

Quantum Jarzynski Equality

- Classical Jarzynski Equality
- Definition of Work in quantum system

Introduction to a Trapped ion system

- Trapping ions
- Basic Operations
- Internal and External Degree of Freedom

Experimental Test of Quantum Jarzynski Equality

- Experimental Procedure
- Thermal State Preparation
- Projective Measurement
- Work Distribution

Conclusion and Outlook

Electric Field Vectors NO! $\nabla \cdot \mathbf{E} = 0$

Linear Ion Trap @ Tsinghua University

²**S**_{1/2}

 ω_{HF} =12,643 GHz ω_{Z} =1.4 MHz x B

Trapped Ion Harmonic Oscillator

Pulsed Laser Configuration

Effective Force induced by Laser beam

Pulsed Laser Configuration

¹⁷¹Yb⁺

Initialization – optical pumping

S. Olmschenk, et al., PRA 76, 052314 (2007)

Detections

¹⁷¹Yb⁺

S. Olmschenk, et al., PRA 76, 052314 (2007)

Operations

¹⁷¹Yb⁺

Internal and External Degree of Freedom

D. Leibfried, et al., RMP 75, 281{324 (2003).

Connecting Internal and External Degree of Feedom

$$H_{bsb} = -i\hbar \eta \Omega \sigma^+ a^\dagger + h.c.$$

$$H_{rsb} = -i\hbar\eta\Omega\sigma^{-}a^{\dagger} + h.c.$$

D. Leibfried, et al., RMP 75, 281{324 (2003).

Internal and External Degree of Freedom

Work Distribution

$$P(W) = \sum_{n,\bar{n}} \delta[W - (E_{\bar{n}}(\tau) - E_n(0))P_{\bar{n}\leftarrow i}B_n^{th}]$$

Proposal for the Test with Trapped Ion System

Employing Trapped Cold Ions to Verify the Quantum Jarzynski Equality, Gerhard Huber, Ferdinand Schmidt-Kaler, Sebastian Deffner and Eric Lutz, Phys. Rev. Lett. 070403 (2008).

1. Prepare Thermal State

a. Prepare |n=0>, motional ground state
b. Let it heat up

a. Prepare |n=0>, motional ground state

b. Heating Mechanism

Thermal State Detection – Projective measurement

2. Project to a phonon number state, $|n\rangle$

Detection of Phonon State by Projective Measurement

Experimental Procedure

Ion-Motion Coupling: Blue Sideband Transition

"Blue Sideband"

$$H_{rsb} = (\hbar/2)\eta\Omega \left[\hat{\sigma}_{+}a^{+}e^{i\varphi} + \hat{\sigma}_{-}ae^{-i\varphi}\right]$$

$$\begin{array}{c}
a^{+}|n\rangle = \sqrt{n+1}|n+1\rangle \\
\frac{|\uparrow, 0\rangle}{-\eta\Omega} & \frac{|\uparrow, 1\rangle}{-\sqrt{2}\eta\Omega} & \frac{|\uparrow, 2\rangle}{-\sqrt{3}\eta\Omega} & \frac{|\uparrow, 3\rangle}{-\sqrt{4}\eta\Omega} & \frac{|\uparrow, 4\rangle}{-\sqrt{5}\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\sqrt{2}\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta\Omega}{-\eta\Omega} \\
\frac{-\eta\Omega}{-\eta\Omega} & \frac{-\eta$$

Main Problem

Photon Shift Operation

Blue Sideband

Adiabatic Passage

Rapid Adiabatic Passage

Control of Intensity and Detuning

|n=0> Detection

|n=1 State Preparation & Detection

Fock |n> States Preparation

3. Provide Work – Displacement Operation

σ_x Dependent Displacement Operation

P. C. Haljan et al., Phys. Rev. Lett. 94, 153602 (2005). P. J. Lee et al., Journal of Optics B 7, S371 (2005).

$$H_{bsb} = \frac{\eta \Omega}{2} \left(a^{\dagger} \sigma^{+} + a \sigma^{-} \right)$$
$$H_{rsb} = \frac{\eta \Omega}{2} \left(a^{\dagger} \sigma^{-} + a \sigma^{+} \right)$$

$$H_{bsb} + H_{rsb} = \frac{\eta \Omega}{2} \left(a^{\dagger} + a \right) \sigma_x$$

Pure Displacement Operation

Coherent State Detection

Work in Our System

In the rotating frame with respect to the driving laser frequency

Final State Measurements – Fitting Methods

Final State Measurements – Intermediate Work

Final State Measurements – Non equilibrium Work

Final State Measurements – Intermediate Work

Comparison to other estimations

$\Delta F/k_{ m B}T_{ m eff}$	$-\ln\left\langle e^{-W_{\rm diss}/k_{\rm B}T_{\rm eff}}\right\rangle$		
	$ au$ =5 $\mu { m s}$	$\tau = 25 \ \mu s$	$\tau = 45 \ \mu s$
-2.63 (316 nK)	$-0.032(\pm 37)$	$0.006(\pm 34)$	$0.042(\pm 52)$
-2.13 (390 nK)	$-0.033(\pm 35)$	$0.005(\pm 33)$	$0.037(\pm 50)$
-1.73 (480 nK)	$-0.034(\pm 34)$	$0.003(\pm 31)$	$0.031(\pm 48)$

$\Delta F/k_{\rm B}T_{\rm eff}$	$\langle W_{\rm diss}/k_{\rm B}T_{\rm eff}\rangle - \frac{1}{2} \frac{\sigma^2}{(k_{\rm B}T_{\rm eff})^2}$		
	τ =5 μs	τ =25 μs	$\tau = 45 \ \mu s$
-2.63 (316 nK)	$-1.601(\pm 443)$	$-0.718(\pm 568)$	$-0.087(\pm 154)$
-2.13 (390 nK)	$-0.889(\pm 346)$	$-0.426(\pm 442)$	$-0.027(\pm 120)$
-1.73 (480 nK)	$-0.505(\pm 269)$	$-0.260(\pm 342)$	$0.002(\pm 93)$

$\Delta F/k_{ m B}T_{ m eff}$	$\langle W_{\rm diss}/k_{\rm B}T_{\rm eff}\rangle$			
	τ =5 μs	τ =25 μs	$\tau = 45 \ \mu s$	
-2.63 (316 nK)	$2.573(\pm 313)$	$0.929(\pm 401)$	$0.211(\pm 109)$	
-2.13 (390 nK)	$2.033(\pm 245)$	$0.749(\pm 313)$	$0.168(\pm 85)$	
-1.73 (480 nK)	$1.598(\pm 190)$	$0.602(\pm 242)$	$0.131(\pm 66)$	

Conclusion and Outlook

• We experimentally verify the Quantum Jarzynski Equality with our Trapped ion system

 It could be extended to the verification of the Equality in open quantum system

